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1. Introduction

We study a model in which households make decisions according to a dual-process
framework widely used in the cognitive psychology literature to describe human decision
making (see, e.g., Stanovich and West (2000)). In this framework, System 1 uses
heuristics to make fast, low-effort decisions that are prone to errors. System 2 engages
in slower, more deliberate reasoning that is cognitively costly but more accurate.

Our analysis builds on the elegant formulation of dual-process reasoning proposed
by Ilut and Valchev (2023). This approach has two desirable features. First, individuals
do not need to solve for the fully rational solution to assess how much to deviate from
it, given cognitive or other costs. Second, individuals act more rationally when making
high-stakes decisions than when facing less consequential ones.

In our model, there is a representative household that makes purchase errors because
optimizing its consumption bundle involves cognitive effort. Since these errors are the
same across households, we interpret them as corresponding to fads or fashions in
consumption behavior. Monopolistic producers, for whom these errors result in high
levels of demand relative to the rational optimum, have an incentive to keep their
prices constant to discourage households from activating System 2 and reconsidering
their purchasing decisions. This strategic behavior gives rise to a novel form of price
inertia.

Our model is consistent with three important empirical facts. The first is the puz-
zling empirical regularity documented by Karrenbrock (1991), Neumark and Sharpe
(1992), Borenstein, Cameron and Gilbert (1997), and Peltzman (2000) known as ”rock-
ets and feathers”: prices rise rapidly when costs increase, but fall slowly when costs
decrease. In our model, when costs rise substantially, all firms increase prices to avoid
losses, leading costs and prices to rise in tandem. In contrast, when costs fall, firms
enjoying strong demand have an incentive to keep prices fixed to avoid triggering re-
optimization by consumers. As a result, prices decline, on average, more slowly than
costs.

The second fact is the “sticky winners” phenomenon documented by Ilut, Valchev
and Vincent (2020), whereby firms experiencing unexpectedly high demand at pre-
vailing prices are less likely to adjust them. This behavior is central to our model:
firms with favorable demand realizations avoid changing prices to prevent households
from engaging System 2 and reoptimizing, which could trigger a new, potentially less
favorable, demand shock.

The third empirical regularity is the downward-sloping hazard functions observed
within narrowly defined goods categories (see Nakamura and Steinsson (2008) and
Campbell and Eden (2014)). This pattern arises naturally from demand heterogeneity
across firms producing the same type of good: those facing weak demand are more
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likely to adjust prices early, while firms experiencing strong demand tend to keep prices
fixed for longer.

In standard models of cashless economies with sticky prices, price stability is typ-
ically optimal because it eliminates relative price distortions caused by inflation (see
Woodford (2003)). In contrast, our framework implies that price stability is not opti-
mal due to the strategic interaction between monopolistic firms and boundedly rational
households. When average inflation is zero, there is still dispersion in the consumption
of varieties because of cognitive errors. Firms that benefit from high demand keep their
prices unchanged, which locks in consumption errors and leads households to settle on
inefficient consumption bundles. Deflation is optimal because it increases the relative
price of goods produced by sticky-price firms, reducing demand for those goods and
mitigating the effects of behavioral biases.

We now present three empirical observations which, although not directly addressed
by our model, provide suggestive evidence of the importance of System 1 in consumer
behavior and of firms’ strategic efforts to exploit this mode of decision making.

The first is “shrinkflation,” a situation where manufacturers reduce product sizes
while keeping prices constant. The UK Office for National Statistics (2019) identified
206 cases between September 2015 and June 2017 in which product size was reduced
with prices remaining largely unchanged. Budianto (2024) reports that 35 percent of the
products included in the U.K. consumer price index between 2012 and 2023 experienced
changes in product size, with prices remaining constant in most instances. This practice
suggests that some manufacturers are prepared to incur considerable expenses to keep
prices stable, presumably to avoid triggering a re-optimization of household purchasing
decisions.2

The second observation is the increasing adoption of subscription-based business
models, such as streaming or software-as-a-service, and the tendency for subscription
prices to remain stable over long periods. This stability can be interpreted as a tactic
producers use to dissuade households from engaging System 2 and reassessing the value
of their subscriptions.3

Amazon Prime subscription prices are remarkably sticky. Initially offered at an
annual rate of $79 in 2011, the fee has only been adjusted a few times: to $99 in

2President Biden deemed shrinkflation important enough to merit discussion in a February 2024
Super Bowl video broadcast. The president noted that “sports drinks bottles are smaller, a bag of
chips has fewer chips, but they’re still charging us just as much [...] ice cream cartons have shrunk in
size but not in price. [...] Some companies are trying to pull a fast one by shrinking the products little
by little and hoping you won’t notice.”

3See Della Vigna and Malmendier (2006) for evidence that consumers often fail to rationally assess
the value they derive from subscription services.
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2014, $119 in 2018, and $139 in 2022. These adjustments were often accompanied by
enhancements in service offerings, including the introduction of Amazon Prime Day,
which served to justify the higher fees.

Netflix provides a case study of both price stability and shrinkflation. The stan-
dard subscription price remained at $7.99 from November 2010 until May 2014. At
that point, the price was increased to $8.99, but only for new subscribers. Exist-
ing subscribers were grandfathered in at the $7.99 rate for an additional two years.
Concurrently, Netflix rolled out a new basic plan priced at $7.99, which offered only
standard-definition video on a single screen, a downgrade from the two high-definition
screens available under the regular plan. The price for this basic plan remained un-
changed until 2019.

The third observation is that convenient prices that are slightly below a round num-
ber (e.g., $9.99 instead of $10) are widely used (Kashyap (1995) and Blinder, Canetti,
Lebow and Rudd (1998)), and less likely to change than other prices (Levy, Lee, Chen,
Kauffman and Bergen (2011) and Ater and Gerlitz (2017)). This practice can be inter-
preted as a way to exploit System 1 thinking, creating the perception that the price is
lower than its actual value.

The paper is organized as follows. Section 2 reviews the related literature. Section 3
presents a version of the model with fully rational households, and Section 4 introduces
bounded rationality into household decision-making. Section 5 shows that the model is
consistent with the rockets and feathers phenomenon. Section 6 analyzes optimal fiscal
and monetary policy. Section 7 develops a dynamic partial-equilibrium model of the
firm and shows that it implies downward sloping hazard functions. Section 8 concludes.

2. Related literature

Our paper builds on the cognitive psychology literature (e.g., Evans and Stanovich
(2013) and Stanovich and West (2000)), which distinguishes between two modes of
decision-making: low-cost, heuristic thinking (System 1) and high-cost, analytical rea-
soning (System 2).

Ilut and Valchev (2023) develop a formulation of the dual-system framework and
use it to study the household consumption-savings behavior in an incomplete markets
environment. In familiar contexts, where beliefs about the policy function are precise,
households rely on prior beliefs to make decisions. In unfamiliar situations, where beliefs
are imprecise, households draw costly signals to update their beliefs about the policy
function.

Building on Ilut and Valchev (2023), we model household decisions regarding the
consumption of differentiated products. We show how strategic interactions between
firms and boundedly rational consumers give rise to a new form of price inertia.
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We extend Ilut and Valchev (2023)’s framework in two directions. First, we use a
quadratic approximation to embed the tracking problem that determines signal preci-
sion within the utility maximization problem, rather than treating it separately. Second,
we ensure that behavioral decisions satisfy the budget constraint directly, removing the
need to specify a residual variable (the savings rate in their analysis) that adjusts so
that the budget constraint holds.

The cognitive costs in our model are consistent with the findings of Afrouzi, Diet-
rich, Myrseth, Priftis and Schoenle (2024). Using survey evidence, these authors show
that households prefer inflation to be zero. Seen through the lens of our model, this
preference reflects the fact that cognitive costs are minimized when inflation is zero.

Our paper is linked to the literature on limited attention, limited information, or
costly control by firms, including Mankiw and Reis (2002), Woodford (2009), Maćkowiak
and Wiederholt (2009), Costain, Nakov and Petit (2019), and Ilut, Valchev and Vincent
(2020).

It is also related to early work on near-rational behavior (e.g., Akerlof and Yellen
(1985) and Cochrane (1989)) and recent work on behavioral macroeconomics, including
Gabaix (2020), Angeletos and Lian (2023), Gabaix and Graeber (2024), Eichenbaum,
Guerreiro and Obradovic (2024), and Andre, Flynn, Nikolakoudis and Sastry (2025).

In addition, our work relates to prior research on the strategic interaction between
firms and consumers in models with information frictions. Matějka (2015) shows that
firms strategically adopt a limited set of reference prices in the presence of inattentive
consumers. De Clippel, Eliaz and Rozen (2014) explore how limited household attention
impacts competition. Rotemberg (1982) proposes a framework where consumer anger
over price changes incentivizes firms to limit price adjustments.

The mechanism in our model complements those that produce asymmetric price
adjustments in menu cost models (see, e.g., Ellingsen, Friberg and Hassler (2006) and
Burstein and Hellwig (2007)). Using a New Keynesian model with menu costs, Cavallo,
Lippi and Miyahara (2023) show that prices tend to rise faster than they fall following
significant cost shocks, such as the 2022 surge in energy prices. This phenomenon occurs
because firms adjust prices more frequently when profit margins are under pressure. In
order for these models to generate substantial price asymmetries, menu costs must
be relatively large—around one percent of revenue (see Ellingsen, Friberg and Hassler
(2006)).4

4According to data compiled by Aswath Damodaran (see data on operating and net margins by
industry sector for the U.S. at this link) in January 2025, the pre-tax operating margin for grocery and
food retail – defined as operating income (revenue minus cost of goods sold minus operating expenses)
as a fraction of revenue – is 3.3 percent. So, a seemingly modest one percent menu cost would represent
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An extended version of our model could potentially shed light on micro-level price
rigidities that traditional models struggle to explain (see, for example, Alvarez, Le Bi-
han and Lippi (2014)). These phenomena include the presence of small price changes
(Klenow and Kryvtsov (2008) and Eichenbaum, Jaimovich, Rebelo and Smith (2014)),
the coexistence of high-frequency price changes with sticky reference prices (Eichen-
baum, Jaimovich and Rebelo (2011)), and the observation that price adjustments for
new products are larger and more frequent (Argente and Yeh (2022)).

At the macro level, our mechanism offers insights into the non-neutrality of monetary
policy. Unlike standard menu-cost models (Golosov and Lucas (2007)), where firms
with large price gaps dominate adjustments, our framework allows for heterogeneous
endogenous adjustment costs. Firms with small price gaps may still adjust prices. As
a result, monetary policy might be more effective.

Finally, our analysis complements other explanations of the rockets and feathers
phenomenon. For instance, Tappata (2009) proposes a model where persistent cost
shocks interact with consumers’ limited information about market prices and production
costs.

3. Model with fully rational households

In this section, we present a version of the model in which households face no
cognitive costs when making decisions, and thus behave fully rationally. We describe
the household problem, the problem of monopolistic producers, the government’s fiscal
and monetary policies, and the economy’s equilibrium.

To streamline the presentation, we relegate the proofs of most lemmas and propo-
sitions in the remainder of the text to the Appendix.

3.1. Household problem

There is a representative household that maximizes its utility,

U =
C1−σ − 1

1− σ
− ϑN

1+ψ

1 + ψ
, σ, ψ, ϑ > 0, (1)

which depends on aggregate consumption (C) and hours worked (N).
Aggregate consumption results from a composite of differentiated goods,

C =

(ˆ 1

0

C
θ−1
θ

i di

) θ
θ−1

, θ > 1, (2)

an implausibly large fraction – roughly 1/3 – of operating income.
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where Ci denotes consumption of good i.
The household’s budget constraint is given by,ˆ 1

0

PiCidi ≤ WN + Π− T, (3)

where Pi is the nominal price of good i, W is the nominal wage, Π are total firm profits,
and T are nominal taxes.

We solve the household problem in two steps.

Step 1. For a given level of consumption expenditure, E, determine the purchases of
differentiated goods, Ci, that maximize the utility derived from consumption. The
Lagrangian for this problem is

Le =
C1−σ − 1

1− σ
+ Λe

(
E −

ˆ 1

0

PiCidi

)
, (4)

where C is given by equation (2).
The solution to this problem is given by,

Ci =

(
Pi
P

)−θ
E

P
, (5)

Λe =

(
E

P

)−σ
1

P
, (6)

where

P ≡
(ˆ 1

0

P 1−θ
i di

) 1
1−θ

. (7)

Equations (2), (5), and (7) imply that C = E/P .

Step 2. Given the solutions for Ci as a function of E and of the prices of individual
varieties, choose the optimal levels of total consumption expenditure and hours worked.
Using the fact that P C = E, we can write the Lagrangian for this problem as,

Lu = U (C,N) + Λu (WN + Π− T − PC) . (8)

The first-order conditions imply the familiar intratemporal condition for hours worked,

ϑCσNψ =
W

P
.

In the version of the model presented in Section 4, we focus on the implications of
bounded rationality along a single dimension: the decision problem solved in step 1.
We assume that decisions made in step 2 are fully rational.
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3.2. Firm’s Problem

Differentiated goods producers are monopolistically competitive. Firm i produces
Yi units of good i using Ni hours according to a linear production function,

Yi = ANi. (9)

The firm’s nominal profits, Πi, are given by

Πi =

[
Pi − (1− τ)

W

A

](
Pi
P

)−θ
C.

where τ is the rate at which the government subsidizes wages.
The profit-maximizing price takes the familiar form,

Pi =

(
θ

θ − 1

)
(1− τ)

W

A
, (10)

which implies that all firms choose the same price.

3.3. Fiscal and monetary policy

For simplicity, we assume that the central bank uses monetary policy to target
nominal expenditure,

M =

ˆ 1

0

Pi Ci di. (11)

The government finances the wage subsidies provided to firms at a rate τ through
lump-sum taxes,

T = τWN. (12)

3.4. Equilibrium

Suppose A = A, M = M , and τ = τ , where

1− τ =
θ − 1

θ
.

This value of the labor subsidy eliminates the monopoly distortion, so that the price
equals marginal cost.

Let C, N , and P denote the equilibrium values of aggregate consumption, labor,
and the price level associated with A, τ , and M .

The equations above imply that,

C =

(
1

ϑ

) 1
σ+ψ

A
1+ψ
σ+ψ ,
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N =

(
1

ϑ

) 1
σ+ψ

A
1−σ
σ+ψ ,

and

P =
M

C
.

Since each firm’s price equals marginal cost, profits are equal to the labor subsidies
received: Π = T , and P C = W N.

3.5. A Second-Order Approximation

To set the stage for the study of household decisions under bounded rationality, we
consider a log-quadratic approximation to the household’s problem around the rational
baseline equilibrium associated with A, τ , and M .

Throughout, unless stated otherwise, we use lowercase variables to denote the log-
arithmic deviation of a variable from the rational baseline equilibrium, i.e., for any X,
x ≡ ln

(
X/X

)
. Given a function f(X), we define df ≡ f(X)− f(X).

The following lemma presents quadratic approximations for the two Lagrangians
used to solve the household problem.

Lemma 1. Let Û ≡ dU/C
1−σ

, L̂e ≡ dLe/C
1−σ

, L̂u ≡ dLu/C
1−σ

. Then

Û ≈
ˆ 1

0

cidi+
1

2

(
θ − 1

θ

) ˆ 1

0

c2
i di+

1

2

[
(1− σ)−

(
θ − 1

θ

)](ˆ 1

0

cidi

)2

−n−1

2
(1+ψ)n2,

L̂e = −1

2
σ c2 − 1

2θ
Vari( ci ) −

ˆ 1

0

pi ci di + λe
(
e− p− c

)
+ Ωe, (13)

and

L̂u = −1

2
σ c2 − 1

2θ
Vari( ci ) −

1

2
ψ n2 + w n −

ˆ 1

0

pi ci di

+ λu

[
w + n+ 1

θ

(
ln

Π

Π
− ln

T

T

)
− p− c

]
+ Ωu ,

(14)

where

p ≡
ˆ 1

0

pi di, (15)

c ≡
´ 1

0
cidi, Vari (ci) ≡

´ 1

0
(ci − c)2 di, and Ωe and Ωu collect terms that are exogenous

to the household problem.
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Under full rationality, the first-order conditions from Lagrangian (13) yield the
standard demand function, which in logarithmic form is given by:

c∗i (pi) = e− p− θ (pi − p) .

To set the stage for our discussion of bounded rationality, it is useful to restate the
problem of optimally choosing consumption varieties as follows.

Lemma 2. Let L̂∗e denote the Lagrangian (13) evaluated at the optimal values of c∗i and
λ∗e. Define

∆L̂e ≡ L̂e − L̂∗e
as the deviation of L̂e, the Lagrangian evaluated at arbitrary values, ci and λe, from L̂∗e.
Then

∆L̂e = − 1

2θ

[ˆ 1

0

[
ci − c∗i (pi)

]2
di + (θ σ − 1)

(̂ 1

0

[
ci − c∗i (pi)

]
di
)2]

+ (λe − λ∗e)
(
e− p−

ˆ 1

0

ci di
)
,

(16)

The proof of this lemma follows directly from the properties of quadratic forms.
Under full rationality, the household chooses {ci}i∈[0,1] and λe to maximize expression
(16), which yields ci = c∗i (pi), i ∈ [0, 1].

4. Model with boundedly-rational households

This section presents a version of the model in which households make decisions
under bounded rationality along the lines of Ilut and Valchev (2023). We use this model
to perform comparative statics with respect to different levels of aggregate productivity,
A.

The model consists of two periods. In the pre-period, prior beliefs have high vari-
ance, so households rely on System 2 to choose ci. In period one, households decide
whether to use System 2 or rely on System 1, that is, use the decision rules established
in the pre-period.

For System 1 to be well-defined in a static framework, we assume there is a pre-
period in which prices are exogenously given initial conditions. These prices are taken
as given by households in the pre-period and serve as state variables for firms and
households in the main period.

To isolate the effects of bounded rationality on the choice of differentiated consump-
tion goods, we assume that households make fully rational decisions about aggregate
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consumption and labor supply, as detailed in step 2 of Section 3. Bounded rationality
applies only to the allocation of expenditure E across individual goods ci, as described
in step 1.

In our model, the optimal value of ci has a simple form, which might lead a skeptical
reader to ask why households do not simply compute the optimum. Our objective
is not to argue that optimization is difficult in this stylized environment. Instead,
we use this familiar monopolistic competition framework to illustrate how bounded
rationality shapes consumer behavior and generates strategic interactions between firms
and consumers.

Households can compute the demand for the baseline equilibrium associated with
A, τ , and M , but are uncertain about how to respond to shocks. The household solves
its problem using the second-order approximations described in Lemma 2.

The household enters the period with a prior belief cbi(pi), about c∗i (pi) which follows
a normal distribution,

cbi (pi) ∼ N
(
µi (pi) , γ

2
i (pi)

)
.

These distributions are independent across goods and values of pi.
This formulation implies that cognitive uncertainty about the demand for good i

depends only on its nominal price. Households know how to adjust the consumption of
each variety i to changes in the aggregate price level, p, or aggregate consumption, c,
but not in response to shifts in individual prices, pi.

Households can obtain a noisy signal about the optimal consumption of variety i,

si(pi) = c∗i (pi) + γε(pi)εi,

where εi ∼ N (0, 1), and εi and εj are orthogonal for i 6= j.
This signal induces a posterior distribution for the optimal consumption of variety

i, given by
cbi (pi) | si ∼ N

(
µi|s (pi) , γ

2
i|s (pi)

)
,

where µi|s (pi) and γ2
i|s (pi) are computed using the standard expressions for the condi-

tional mean and variance of a normal distribution.
To generate a signal for the optimal consumption of good i, the household incurs

a cognitive cost that increases with the precision of the signal. The utility of the
boundedly rational household is Û − I, where I is the total cognitive cost of all the
signals generated by the household.

We assume that cognitive costs are proportional to the reduction in uncertainty.
Following Sims (2003), we measure this reduction as the decrease in entropy, or equiv-
alently, as the Shannon mutual information,

I =
κ

2

ˆ 1

0

[
ln γ2

i (pi)− ln γ2
i|s (pi)

]
di,

11



where
γ2
i (pi) ≡ Var

[
cbi (pi)

]
, γ2

i|s (pi) ≡ Var
[
cbi (pi) | si

]
.

The expression for the conditional distribution of a normal random variable implies
that

γ2
i|s (pi) =

γ2
i (pi) γ

2
ε (pi)

γ2
i (pi) + γ2

ε (pi)
,

so we can model the selection of the signal variance as a choice over the posterior
variance, γ2

i|s (pi).

It is helpful to define the expression analogous to (16) for the household making
decisions under bounded rationality:5

∆L̂be = − 1

2θ

[ˆ 1

0

[
ci − cbi(pi)

]2
di+ (θ σ − 1)

(̂ 1

0

[
ci − cbi(pi)

]
di
)2]

+
(
λe − λbe

) (
e− p−

ˆ 1

0

ci di
)
.

(17)

Under bounded rationality, the problem of allocating spending across differentiated
goods to maximize utility for a given total consumption expenditure can be written as

max
ci,γ2

i|s(pi)
min
λe

E
(

∆L̂be
)
− I s.t. γ2

i|s (pi) ≤ γ2
i (pi) i ∈ [0, 1] , (18)

where the constraint guarantees that the solution is consistent with Bayes’ rule, that
is, households cannot choose signals that increase the posterior variance to obtain a
negative cognitive cost.6

We begin by solving for ci. Using the fact that at any solution, c = e − p, the
first-order conditions yield:

ci = µi|s (pi) + c−
ˆ 1

0

µi|s (pi) di. (19)

5A well-known technical difficulty arises when computing the integral of independent, non-
degenerate random variables indexed over an uncountable set: the process cannot be jointly mea-

surable, and expressions such as
´ 1
0
Xi di are not well-defined as Riemann or Lebesgue integrals on a

standard probability space (see Judd (1985) and Uhlig (1996)). We sidestep this measurability problem

by interpreting the integral as the limit of an average over a large but finite set,
´ 1
0
Xi di ≈ 1

N

∑N
i=1Xi,

which converges by the law of large numbers as N →∞.
6I does not include include cognitive costs associated with the Lagrange multiplier because these

costs are not relevant to the solutions for ci and γ2i|s (pi).
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The demand for each good equals its posterior mean, adjusted by a constant term
(c−

´ 1

0
µi|s (pi) di) to ensure that the constraint, e− p =

´ 1

0
ci di, is satisfied.

Having derived the demand functions given a set of signals, we now solve for the
optimal posterior variance for each consumption variety, which is equivalent to selecting
the optimal signal precision.

Lemma 3. The optimal posterior variance of cbi is the solution to the following problem:

max
γ2
i|s(pi)

− 1

2θ

ˆ 1

0

γ2
i|s(pi) di −

κ

2

ˆ 1

0

[
ln
(
γ2
i (pi)

)
− ln

(
γ2
i|s(pi)

)]
di

s.t. γ2
i|s(pi) ≤ γ2

i (pi), i ∈ [0, 1].

(20)

The first term in equation (20) captures the benefit from reducing uncertainty and
the second term reflects the cognitive cost associated with achieving this reduction.

The first-order conditions for problem (20) are:

γ2
i|s (pi) = min

{
γ2
i (pi) ; θκ

}
. (21)

This condition implies that the household activates System 2 for good i whenever
the value of pi is unfamiliar, i.e., when the prior uncertainty about the optimal value
for ci corresponding to pi is high (γ2

i (pi) > θκ).
The likelihood of activating System 2 declines with κ and θ. A higher κ increases

cognitive costs, reducing the incentive to engage System 2. A higher θ implies greater
substitutability across goods, reducing the utility contribution of each variety. Conse-
quently, for a given level of aggregate consumption, c, the value of learning the optimal
demand for each variety declines.

Learning in the pre-period. There is a pre-period in which households choose their
consumption for each variety, i.

To ensure that ex-ante biases do not drive our results, we assume, as in Ilut and
Valchev (2023), that the pre-period prior distribution is centered on the rational de-
mand,

µi,0 (pi) = c∗i (pi) . (22)

Obviously, households are not aware that their prior beliefs happen to be centered
on the truth. If they were, they would already know the optimal choice and have no
reason to expend cognitive effort.7

7An alternative way to eliminate systematic ex-ante biases is to assume that the prior mean equals
the optimal demand plus a noise term uncorrelated across goods. In this case, the average ex-ante bias
across goods is zero, but the prior for any individual good would generally not be centered on the true
demand.
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We assume that the pre-period prior variance, γ2
i,0 (pi), is equal to γ2

c for all goods. In
addition, we assume that γ2

c > θκ, so the initial level of uncertainty justifies activating
System 2.

Equation (21) implies that the household chooses to learn whenever its prior variance
about optimal consumption of good i exceeds θκ. In the pre-period, all prior variances
are, by assumption, above this threshold. As a result, the household generates a signal
about the optimal consumption of good i corresponding to the prices set by firms, pi,0,
and updates its beliefs about this demand.

The household does not update its beliefs for prices not posted by firms in the pre-
period. For those prices, the posterior distribution about optimal consumption is equal
to the prior (recall that we assume the priors are centered on the rational demand).
Given these considerations, the resulting pre-period posterior means and variances are:

µi (pi) =

{
c− θ (pi − p) + αγεεi,0, if pi = pi,0

c− θ (pi − p) , if pi 6= pi,0
,

where

α ≡ 1− θκ

γ2
c

, γε =

√
θκ

α
, (23)

and

γ2
i (pi) =

{
θκ, if pi = pi,0

γ2
c , if pi 6= pi,0

.

Since γ2
c > θκ, the household relies on System 2 only when pi 6= pi,0. When the price

of good i is the same as in the pre-period, uncertainty about the optimal consumption
of good i is sufficiently low that the household chooses to avoid cognitive costs and
follows the rule inherited from the pre-period.

The period-one posterior means, µi|s (pi), are

µi|s (pi) = c− θ (pi − p) + αγεε̃i, (24)

where ε̃i = εi,0 if pi = pi,0, and ε̃i = εi,1 ∼ N (0, 1) otherwise.
When firm i sets its price, it knows the value of εi,0 but not εi,1. By combining

equations (19) and (24) we obtain the following expression for the demand for good i:

ci = c− θ (pi − p) + αγε [ε̃i − Ei (ε̃)] , (25)

where the term Ei (ε̃) ≡
´ 1

0
ε̃idi ensures that the constraint e− p =

´ 1

0
ci di is satisfied.
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Combining equations (14) and (25) and taking the first-order conditions with respect
to c, n, and λu yields the standard intratemporal condition for labor choice, expressed
in logarithmic form,

σc+ ψn = w − p. (26)

Our model has a representative household, so the demand shocks ε̃i are aggregate in
nature. We interpret these shocks as capturing fads or fashions. Idiosyncratic demand
shocks would have no effect, because they average out across households.

4.1. The firm’s problem

We now revisit the firm’s problem, taking into account the fact that households
make decisions under bounded rationality. We write the problem in levels, using the
relation X = Xex.

The ex-post nominal profits of firm i are given by,

Πi =

[
Pi − (1− τ)

W

A

]
Ci.

The firm makes two decisions: whether to adjust its price, and if so, by how much.
Suppose that prices in the pre-period are common across firms, so Pi,0 = P0 for all

i ∈ [0, 1]. The following lemma characterizes the optimal pricing policy of firm i.

Lemma 4. Define π ≡ p− p0 and Θ ≡ ln (θ/(θ − 1)). Firm i’s optimal pricing policy
is:

pi =

{
padj, if εi,0 < ε

p0, if εi,0 ≥ ε
. (27)

where

padj = w + ln

(
1− τ
1− τ

)
− a, (28)

and

ε =

1
2
αγε − 1

αγε

{
(θ − 1) [(padj − p) + π] + ln

[
1−e(padj−p)+π−Θ

1−e−Θ

]}
, if (padj − p) + π < Θ

∞, if (padj − p) + π ≥ Θ
.

(29)

Equation (27) implies that firms with a high demand shock (higher than ε) do not
adjust their price. This behavior is consistent with the “sticky winners” phenomenon
documented Ilut et al. (2020): firms experiencing unexpectedly high demand at pre-
vailing prices are less likely to adjust them.
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Figure 1: Inaction region for firms price setting

The optimal reset price, padj, coincides with the price in the model with fully rational
households because, conditional on a price change, cognitive errors are uncorrelated with
prices.

Equation (29) implies that when (padj − p) +π ≥ Θ, no realization of the past noise
εi,0 makes it optimal for the firm to keep its current price. In this case, the implied
profit margin is non-positive, so the firm can always increase profits by adjusting its
price. This asymmetry, which plays a central role in our “rockets and feathers” result,
is illustrated in Figure 1.

High cost inflation erodes margins evaluated at fixed prices, prompting most firms
to abandon their existing demand shocks and raise prices. In contrast, when costs
decline, firms may choose to maintain their favorable demand shocks rather than reduce
prices. Although a price cut could increase the quantity sold, some firms already sell
more than they would if households were fully rational. Lowering prices would activate
the household’s System 2, prompting a reassessment of demand and generating a new
demand shock. To avoid this reset and preserve their high demand levels, firms often
choose to keep their prices constant.

The pricing policy described in Lemma 4 implies that a fraction χ of firms choose
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not to adjust their prices, where

χ ≡ 1− Φ (ε) , (30)

and Φ is the cumulative distribution function of the standard normal distribution. Using
the definition of the aggregate price level from equation (15), we obtain the following
standard relationship between padj and π:

0 = −χπ + (1− χ)(padj − p). (31)

4.2. Equilibrium

To define the equilibrium, we normalize the initial price level to one, which implies
that the log price level at time zero is zero, p0 = 0.

An equilibrium consists of allocations {ci}i∈[0,1], c, n, prices {pi}i∈[0,1], w, and infor-
mation acquisition strategies {γi|s}i∈[0,1], such that, given a, m, τ , p0, and {µi, γi}i∈[0,1],
the following conditions are satisfied:

1. Given e, the price vector {pi}i∈[0,1], and the belief parameters {µi, γi}i∈[0,1], the
household chooses ci and {γi|s}i∈[0,1] to solve the optimization problem (18);

2. Given consumption decisions for ci, the household chooses c and n to maximize
utility;

3. Each firm i chooses pi to maximize profits;

4. The aggregate price level p satisfies equation (15);

5. Markets clear:
π + c = m, (32)ˆ 1

0

ni di = n. (33)

ci = a+ ni (34)

The government budget constraint is redundant.
Using equations (33) and (34) we obtain:

c = a+ n, (35)

which shows that, to a first-order approximation, there are no productive distortions.
The equilibrium conditions for the aggregate variables are given by equations (26),

(28), (29), (30), (31), (32), and (35). Substituting equations (28) and (31) into this
system of equations allows us to reduce the equilibrium conditions to equation (30),
(32), and the condition for the cutoff ε:
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ε =

1
2
αγε − 1

αγε

[
(θ − 1) π

1−χ + ln
(

1−e
π

1−χ−Θ

1−e−Θ

)]
, if π

1−χ < Θ,

∞, if π
1−χ ≥ Θ,

and

c = c∗ +
1

ψ + σ

[
χ

1− χ
π − ln

(
1− τ
1− τ

)]
,

where

c∗ ≡
(

1 + ψ

ψ + σ

)
a,

denotes aggregate output in the equilibrium of the model with fully rational households.
The following proposition summarizes the existence and uniqueness properties of

our model.

Proposition 1. An equilibrium exists. Moreover, if ψ + σ ≥ 1, the equilibrium is
unique.

4.3. The Phillips curve

For τ = τ , the Phillips curve for this economy is given by

c− c∗ =
1

ψ + σ

(
χ

1− χ

)
π. (36)

Figure 2 displays this Phillips curve. The output gap is defined as the current level of
log output minus the level of log output in the economy with fully rational households.
When inflation exceeds 12 percent, the Phillips curve becomes approximately vertical:
firms face low or negative profit margins at current prices and choose to adjust prices
regardless of their demand shocks. The Phillips curve has a conventional upward slope
when the inflation rate is between -3.8 and 3 percent. In this range, higher inflation is
associated with a more positive output gap. As inflation rises beyond 3 percent, price
flexibility increases as more firms adjust their prices, causing the Phillips curve to slope
backward and the output gap to approach zero. Because firms are more responsive
to inflation than to deflation, the inflation rate at which the Phillips curve becomes
approximately vertical is lower in absolute value when inflation is positive (12 percent)
than negative (19 percent).

We now examine the properties of the equilibrium. The following proposition char-
acterizes the relationship between the threshold ε and inflation π, using the fact that
χ = 0 when ε =∞.
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Figure 2: Phillips curve: inflation rate versus output gap.

Proposition 2. The equilibrium relationship between ε and π is given by:

ε(π) =

{
1
2
αγε − 1

αγε

[
(θ − 1) π

1−χ + ln
(

1−e
π

1−χ−Θ

1−e−Θ

)]
, if π < Θ,

∞, if π ≥ Θ.
(37)

Moreover, the function ε(π) satisfies the following properties:

1. ε(π) attains its minimum at π = 0;

2. For any a > 0, we have ε(a) > ε(−a).

Proposition 2 implies that the function

χ(π) ≡ 1− Φ [ε(π)] ,

attains its maximum at π = 0 and satisfies χ(a) < χ(−a) for all a > 0. Hence, the
model implies an asymmetry in the hazard expressed as a function of the price gap. The
probability of a change in price rises faster with positive inflation than with deflation.
This asymmetry plays a key role in explaining the rockets and feathers phenomenon
discussed in Section 5.
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5. Rockets and Feathers

We now study the impact of cost shocks and show that our model is consistent with
the rockets and feathers phenomenon: prices rise quickly when costs increase but fall
slowly when costs fall.

To do so, we examine the equilibrium response to symmetric cost shocks, ν > 0 and
−ν, assuming m = 0. We define the deviation of consumption from its steady-state
value as

c̃(π) ≡ c(π)− c∗ =
1

ψ + σ

(
χ

1− χ

)
π.

Figure 3: The impact of cost shocks on the absolute value of the logarithm of inflation

A cost increase (ν < 0) leads to inflation, while a cost decrease (ν > 0) results in
deflation. To compare the price response to both types of shocks, Figure 3 plots the
absolute value of the logarithm of gross inflation against the absolute value of the cost
shock, |ν|. The blue line represents cost increases, and the orange line cost decreases.
In a fully rational version of our model, the two lines would coincide, because price
responses would be symmetric. With bounded rationality, prices respond more to cost
increases than to cost decreases.

This “rockets and feathers” pattern results from an underlying asymmetry in the
profit function. Although the function is locally symmetric around the optimal price,

20



it is globally asymmetric. When costs rise, profit margins eventually turn negative. At
that point, firms cannot, as the old business adage goes, “lose money on every unit but
make it up on volume.” Cost increases ultimately prompt firms to abandon a favorable
demand shock and reoptimize their price.

In contrast, when costs fall, profit margins improve rather than deteriorate. Firms
benefiting from strong demand prefer to keep their prices unchanged to avoid triggering
System 2 and generate a new demand shock. As a result, average price reductions are
typically smaller than cost declines.

As |ν| increases, the orange and blue curves in Figure 3 converge. When positive
cost shocks exceed roughly 12 percent, most firms adjust their prices. In contrast, it
takes a cost decline of more than 19 percent for nearly all firms to reduce prices.

The following proposition states our key result:

Proposition 3. Let ν > 0, and consider the equilibria with c∗ = ν and m = 0. Then
the corresponding inflation rates satisfy π(ν) < 0, π(−ν) > 0, and

π(−ν) > −π(ν).

For sufficiently large cost shocks, inflation responds more strongly (in percentage
terms) than deflation to shocks of equal absolute size.

The asymmetry in the profit function also gives rise to asymmetric price adjustments
in other frameworks, such as menu cost models (see Ellingsen, Friberg and Hassler
(2006), Burstein and Hellwig (2007) and Cavallo, Lippi and Miyahara (2023)).

6. Optimal Policy

We now characterize the optimal values for the labor subsidy rate, τ , and the growth
rate of money, m. We start by computing the indirect utility, net of cognitive costs, for
a particular equilibrium.

Lemma 5. The Lagrangian associated with the quadratic approximation to the plan-

ner’s problem, L̂p ≡ dLp/C
1−σ

, is

L̂p = −1

2
σc2 − 1

2
ψn2 − 1

2θ
∆ (π) + a+

1

2
a2 + an+ λp (n+ a− c) .

where
∆ (π) ≡ Vari (ci) + 2θI,

Vari( ci ) = θ2 1− Φ
(
ε(π)

)
Φ
(
ε(π)

) π2 + α2 γ2
ε

{
1 + ε φ

(
ε(π)

)
− φ2

(
ε(π)

)}
+ 2 θ α γε π φ

(
ε(π)

)
,
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2θI = Φ [ε (π)]αγ2
ε ln

(
1

1− α

)
,

and λp denotes the Lagrange multiplier.

The solution to the planner’s problem involves

c = c∗ =

(
1 + ψ

σ + ψ

)
a,

and

n = n∗ =

(
1− σ
σ + ψ

)
a.

That is, the optimal allocation corresponds to the first-order responses in the rational
economy.

Lemma 5 implies that the optimal inflation rate solves

min
π

∆ (π) .

We first show that if prior uncertainty is sufficiently high, then price stability (π = 0)
is preferable to high inflation (π ≥ Θ).

Lemma 6. There is γc such that, if γc ≥ γc, then ∆ (0) < ∆ (Θ).

We now show that even under parameter conditions that ensure that price stability
is preferable to full flexibility, it is not optimal to set π = 0.

Lemma 7. There is δ > 0 such that for all π ∈ (−δ, 0), ∆ (π) < ∆ (0).

Proof. The result follows from the fact that

∆′ (0) = 2θαγεφ [ε (0)] > 0.

The intuition for this result is as follows. When average inflation is zero, firms ex-
periencing high demand due to household decision errors do not change their prices.
Other firms slightly increase or decrease their prices to draw a new demand shock.
As a result, sizeable behavioral mistakes become ingrained, leading households to se-
lect a highly suboptimal consumption basket. Moving from zero inflation to deflation
mitigates this inefficiency by improving consumption choices.

Why is deflation locally better than inflation? The logic is as follows. Due to
cognitive costs, households do not choose the fully-rational value of ci. The planner
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would like to reduce the consumption of goods supplied by firms that have sticky prices,
since these firms received positive demand shocks. When inflation is positive, the
relative price of the goods produced by firms with sticky prices falls, inducing households
to consume more of these goods and exacerbating the impact of behavioral biases. In
contrast, when inflation is negative, the relative price of the goods produced by firms
with sticky prices rises. As a result, the consumption of these goods falls, mitigating
the impact of behavioral biases.

7. A Dynamic Model

In this section, we consider a dynamic partial equilibrium model where a single
firm faces the dual-process demand discussed in Section 4 and maximizes the expected
present value of profits discounted at rate β. We now omit the subscript i and denote
by Pt the price set by the firm. We assume that the aggregate price level is constant
and normalized to one.

Households have incomplete memory: when the price changes, they forget past
prices and purchase decisions, and learn a noisy estimate of their optimal demand at
the new price. So, prices observed before period t − 1 are irrelevant for household
choices.

As in the static model, firms choose prices and then households choose whether to
draw a signal about the optimal demand. The firm’s demand is given by:

Ct = P−θt

{
eαγεεt−1 , if pt = pt−1

eαγεεt , if pt 6= pt−1

,

where εt ∼ N (0, 1). As before, lowercase variables denote logarithmic deviations, e.g.
ln(Pt/1) = pt.

The marginal cost, Ξt, is observed at the beginning of the period before the firm
makes its pricing decision. When the firm changes its price, the new demand shock is
observed at the end of the period. Expected flow profits at the beginning of the period
are given by:

Πt = (Pt − Ξt)P
−θ
t

{
eαγεεt−1 , if pt = pt−1

E (eαγεεt) , if pt 6= pt−1,
.

To simplify, we use a second-order log-approximation to flow profits around the
following solution to the firm’s problem: Ξ ≡ (θ − 1) /θ, P ≡ 1, and Π = 1/θ.

We assume that the logarithm of marginal cost, ξ = ln
(
Ξt/Ξ

)
, evolves according to

a jump diffusion process,
ξt = ξt−1 + υt,
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where the innovation υt follows the following process:

υt =

{
0, with probability ρ

∼ N (0, γ2
υ) , with probability 1− ρ

.

Lemma 8. Let rt ≡ ln
(
Πt/Π

)
. The firm’s per-period reward, computed using a second-

order approximation, is

rt = − (θ − 1) ξt −
θ (θ − 1)

2
(pt − ξt)2 +

{
αγεεt−1, if pt = pt−1

1
2

(αγε)
2 , if pt 6= pt−1

.

Let xt = pt−1 − ξt denote the beginning-of-period price gap, and let x̃t = pt − ξt be
the price gap chosen in period t. The jump diffusion process for marginal cost, implies:

xt+1 = pt − ξt+1 = x̃t − υt+1.

The firm’s problem can be formulated recursively with two state variables: xt and εt−1.
Let β < 1 denote the firm’s discount factor. The firm’s value function is given by:

V (x, ε) = max {Vno-adj (x, ε) ;Vadj} , (38)

where

Vno-adj (x, ε) = (1− β)

[
−θ (θ − 1)

2
x2 + αγεε

]
+ βEυ [V (x− υ′, ε)] , (39)

and

Vadj = max
x̃

{
(1− β)

[
−θ (θ − 1)

2
x̃2 +

1

2
(αγε)

2

]
+ βEε [Eυ [V (x̃− υ′, ε′)]]

}
. (40)

The following lemma describes some key properties of the firm’s value function.

Lemma 9. Vno-adj (x, ε) is strictly increasing in ε and V (x, ε) is nondecreasing in ε.

Proof. Suppose V (x, ε) is nondecreasing in ε. From equation (39), Vno-adj (x, ε) is strictly
increasing in ε. Since Vadj is a constant, the operator implied by equation (38) maps
into a nondecreasing function. Because the space of nondecreasing functions is closed,
V (x, ε) is nondecreasing.

Corollary 1. The optimal policy involves a threshold ε (x) such that if ε > ε (x),
Vno-adj (x, ε) > Vadj.
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Figure 4: Inaction region

Figure 4 shows how the discount factor affects the inaction region—the set of con-
ditions under which firms keep prices unchanged. The orange curve represents myopic
firms (β = 0), while the blue curve corresponds to forward-looking firms that value
future profits.8

Myopic firms place less value on favorable demand shocks than forward-looking
firms. This property has two implications illustrated in Figure 4. First, when the
price gap is small, myopic firms are less inclined to adjust prices to activate System 2 in
hopes of eliciting a strong demand realization, because they fail to account for the future
value of a high demand shock. Second, when the price gap is large, myopic firms require
unusually strong demand shocks to justify leaving prices unchanged, again because they
disregard the future benefits of high demand. In contrast, forward-looking firms are
more likely to keep prices fixed even with large price gaps, because they recognize that
positive demand shocks are valuable in the future.

We now highlight an important property of the dynamic model: it can account for a
key empirical regularity emphasized by Nakamura and Steinsson (2008) and Campbell
and Eden (2014): the hazard function for individual goods categories is downward

8Figure 4 is analogous to Figure 1. Although Figure 1 displays inflation on the x-axis, inflation
effectively determines the price gap in the static model. However, Figure 4 lacks the asymmetries seen
in Figure 1 because the firm problem is solved using a quadratic approximation.
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Figure 5: Hazard function: probability that a firm changes its price in period t, conditional on the
price having remained unchanged for the previous t− 1 periods

sloping.9 In contrast, standard menu cost models typically generate upward-sloping
hazard functions.

Figure 5 plots the hazard function implied by our model.10 In our framework,
firms facing unfavorable demand shocks are more likely to adjust prices early, while
those experiencing favorable shocks tend to keep prices fixed for longer periods. This
heterogeneity in demand conditions naturally gives rise to downward-sloping hazard
rates.

9The aggregate hazard function across all CPI categories is sharply downward-sloping (see, e.g.,
Klenow and Kryvtsov (2008)). This property is primarily due to a composition effect across different
categories. Prices of goods such as gasoline and fresh food products change frequently, while service
prices are more stable. At short durations, all categories are represented, but at longer durations,
services dominate. Our focus is not on these compositional effects across categories but on the fact
that hazard functions tend to be downward-sloping even within narrowly defined categories.

10See Alvarez, Lippi and Oskolkov (2022) for a discussion of the close relation between the duration
hazard depicted in Figure 4 and the “generalized hazard function” displayed in Figure 5, which relates
the firm’s price adjustment probability to its own state.
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8. Conclusion

This paper develops a model in which households make decisions according to a
dual-process framework. This approach gives rise to a novel form of price rigidity that
stems from the strategic interaction between consumers and monopolistic producers.
There is a range of cost shocks for which some producers refrain from adjusting prices
so that households do not reassess their purchasing decisions.

The model is consistent with three important empirical facts. First, it accounts
for the well-known ”rockets and feathers” phenomenon: prices rise quickly in response
to cost increases but fall slowly when costs decline. Second, it is consistent with the
finding of Ilut et al. (2020) that firms experiencing strong demand realizations are less
likely to adjust their prices. Third, it produces downward-sloping hazard functions,
consistent with those estimated from micro data.
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9. Appendix

9.1. Proof of Lemma 1

Let

u
(
c
)
≡

(
1
n

∑n
k=1 C

θ−1
θ

k
n

)(1−σ) θ
θ−1 − 1

1− σ
,

and let
C k
n
≡ C e

c k
n .

The vector c is given by
[
c 1
n
, c 2

n
, ...cn

n

]
. Then

u
(
c
)

=
C

1−σ
(

1
n

∑n
k=1 e

θ−1
θ
c k
n

)(1−σ) θ
θ−1 − 1

1− σ
.

The derivative of u
(
c
)

with respect to c k
n

is

uk
(
c
)

= C
1−σ
(

1
n

n∑
i=1

e
θ−1
θ
c i
n

)(1−σ) θ
θ−1
−1 1

n
e
θ−1
θ
c k
n .

The derivative of uk
(
c
)

with respect to c j
n

is

ukj
(
c
)

= C
1−σ

[
(1− σ) θ

θ−1
− 1

] (
1
n

n∑
i=1

e
θ−1
θ
c i
n

)(1−σ) θ
θ−1
−2

×
(

1
n
e
θ−1
θ
c k
n

) (
1
n

) (
θ−1
θ

)
e
θ−1
θ
c j
n .

The derivative of uk
(
c
)

with respect to c k
n

is

ukk
(
c
)

= C
1−σ

[(
1
n
e
θ−1
θ
c k
n

) [
(1− σ) θ

θ−1
− 1

] (
1
n

n∑
i=1

e
θ−1
θ
c i
n

)(1−σ) θ
θ−1
−2

×
(

1
n

)(
θ−1
θ

)
e
θ−1
θ
c k
n

]
+ C

1−σ
(

1
n

n∑
i=1

e
θ−1
θ
c i
n

)(1−σ) θ
θ−1
−1 (

θ−1
θ

) (
1
n
e
θ−1
θ
c k
n

)
.
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Evaluating these expressions at c = 0, we obtain

u(0) =
C

1−σ − 1

1− σ
, uk(0) =

1

n
C

1−σ
,

ukj(0) = C
1−σ

[
(1− σ) −

(
θ−1
θ

)] (
1
n

)2

,

and

ukk(0) = C
1−σ

[
(1− σ) −

(
θ−1
θ

)] (
1
n

)2

+ C
1−σ

(
θ−1
θ

) 1

n
.

A quadratic approximation to u(c) around c = 0 is given by,

u(c) ≈ u(0) + C
1−σ 1

n

n∑
k=1

c k
n

+
1

2
C

1−σ
(
θ−1
θ

) 1

n

n∑
k=1

c2
k
n

+
1

2
C

1−σ
[

(1− σ) −
(
θ−1
θ

)] (
1
n

n∑
k=1

c k
n

)2

.

Taking n→∞, we obtain,

u (c)− u (0)

C
1−σ ≈

ˆ 1

0

cidi+
1

2

(
θ − 1

θ

) ˆ 1

0

c2
i di+

1

2

[
(1− σ)−

(
θ − 1

θ

)](ˆ 1

0

cidi

)2

.

Now consider the disutility of labor,

g (n) = ϑ
N

1+ψ

1 + ψ
e(1+ψ)n.

Note that in equilibrium,

ϑN
ψ
C
σ

= A =
C

N
⇐⇒ ϑN

1+ψ
= C

1−σ
.

A quadratic approximation is given by,

g (n) =
C

1−σ

1 + ψ
e(1+ψ)n

≈ C
1−σ

1 + ψ

[
1 + (1 + ψ)n+

1

2
(1 + ψ)2 n2

]
,
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so that

Û ≡ u (c)− u (0)

C
1−σ − g (n)− g (0)

C
1−σ

≈
ˆ 1

0

cidi+
1

2

(
θ − 1

θ

) ˆ 1

0

c2
i di+

1

2

[
(1− σ)−

(
θ − 1

θ

)](ˆ 1

0

cidi

)2

− n− 1

2
(1 + ψ)n2

= c− n− 1

2
σc2 − 1

2
ψn2 +

1

2

ˆ 1

0

c2
i di−

1

2
n2 − 1

2θ
Vari (ci) ,

where

Vari (ci) =

ˆ 1

0

c2
i di−

(ˆ 1

0

cidi

)2

Now consider the constraint terms associated with each of the problems.

Ge ≡ Λe

(
E −

ˆ 1

0

PiCidi

)
.

Let

Λe ≡
C
−σ

P
,

E ≡ P × C.
Write

Ge = Λee
λe

(
Eee − P × C

ˆ 1

0

epi+cidi

)
= C

1−σ
eλe
(
ee −

ˆ 1

0

epi+cidi

)
,

so
Ge

C
1−σ = eλe

(
ee −

ˆ 1

0

epi+cidi

)
.

Let

fe (c, λe,p, e) = eλe+e −
ˆ 1

0

eλe+pi+cidi.

Then

eλe+e ≈ 1 + λe + e+
1

2
(λe + e)2

= 1 + λe + e+
1

2
λ2
e + λee+

1

2
e2
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and

e(λe+pi+ci) ≈ 1 + (λe + pi + ci) +
1

2
(λe + pi + ci)

2

= 1 + (λe + pi + ci) +
1

2
λ2
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2
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Therefore
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Now consider the constraint of step 2,

Gu = Λu

(
WN + Π− T −
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0

PiCidi

)
,

Analogously, we can write

Gu = Λue
λu

(
W ×New+n + Πeln(Π

Π
) − Teln(T

T
) − P × C

ˆ 1

0

epi+cidi

)
.

Note that W ×N = P × C, and Π = T . Moreover, Λu = C
−σ
/P . Therefore

Gu

C
1−σ = eλu+w+n +
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P C
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eλu+ln(Π
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Therefore

Gu
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Summing utility with the constraint terms yield the results.

9.2. Proof of Lemma 3

Combining equation (19) and E
[
∆L̂e | s

]
,

E
[
∆L̂e | s

]
= − 1
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]
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Let
´ 1
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]
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The second expectation is
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The last equality results from the law of large numbers. Therefore

E
[
∆L̂e | s

]
= − 1

2θ

ˆ 1

0

γ2
i|s (pi) di−

1

2
σ
(
c− µ|s

)2
.

Finally, letting µ ≡
´ 1

0
µi (pi) di,

E
[(
c− µ|s

)2
]

= E
[(
c− µ+ µ− µ|s

)2
]

= (c− µ)2 + E
[(
µ|s − µ

)2
]

= (c− µ)2 ,

where the last equality follows again from the law of large numbers. Therefore

E
[
∆L̂e

]
= − 1

2θ

ˆ 1

0

γ2
i|s (pi) di−

1

2
σ (c− µ)2 ,

which implies that only the first term depends on the distribution of the signal.

9.3. Proof of Lemma 4

Using the approximation X = Xex, we have

Πi = P C
(
epi − ew−a+ln( 1−τ

1−τ )−Θ
)
ec−θ(pi−p)+αγε{ε̃i−Ei[ε̃]}.

Conditional on a price change, expected profits are

Πi = P C
(
epi − ew−a+ln( 1−τ

1−τ )−Θ
)
ec−θ(pi−p)+

1
2

(αγε)
2−αγεEi[ε̃].

Taking the first-order condition with respect to pi yields

pi = w − a+ ln

(
1− τ
1− τ

)
≡ padj.

Therefore, optimized profits conditional on a price change are

Πadj = P C
(
1− e−Θ

)
e−(θ−1)(padj−p)+p+c−αγεEi[ε̃]e

1
2

(αγε)
2

.

Conditional on keeping the price, profits are:

Πno-adj = P C
(
1− e(padj−p)+π−Θ

)
ep+c+(θ−1)π+αγε(εi,0−Ei[ε̃]).
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Provided that
e(padj−p)+π−Θ < 1,

Πno-adj is strictly increasing in εi,0, so a threshold rule is optimal. The threshold ε is
given by:

Πno-adj = Πadj,

which implies:

ε =
1

2
αγε −

1

αγε

{
(θ − 1) [(padj − p) + π] + ln

[
1− e(padj−p)+π−Θ

1− e−Θ

]}
.

9.4. Proof of Proposition 2

We show the properties included in this proposition one at a time.

Uniqueness of ε (π).. We first show that when π < Θ, (37) is a well-defined function.
Let

f (ε, π) =
1

2
αγε −

1

αγε

[
(θ − 1)

π

Φ (ε)
+ ln

(
1− e

π
Φ(ε)
−Θ

1− e−Θ

)]
− ε.

Note that f (ε, π) is only defined if π < Φ (ε) Θ. Therefore, if π < 0, f is always
well-defined. Otherwise, it is only defined for

ε > Φ−1
( π

Θ

)
.

Hence, this function is only defined for π < Θ. First suppose that π < 0. Then

lim
ε→−∞

f (ε, π) =
1

2
αγε −

1

αγε

[
ln

(
1

1− e−Θ

)]
− lim

ε→−∞

[
1

αγε
(θ − 1)

π

Φ (ε)
− ε
]

=
1

2
αγε −

1

αγε

[
ln

(
1

1− e−Θ
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− lim

ε→−∞

{
1

Φ (ε)

[
1

αγε
(θ − 1) π − εΦ (ε)

]}
=

1

2
αγε −

1

αγε

[
ln

(
1

1− e−Θ

)]
− 1

αγε
(θ − 1) π lim

ε→−∞

{
1

Φ (ε)

}
=∞,

and

lim
ε→∞

f (ε, π) = lim
ε→∞

{
1

2
αγε −

1

αγε

[
(θ − 1) π + ln

(
1− eπ−Θ

1− e−Θ

)]
− ε
}

= −∞.

The case where π = 0 is trivial, since in that case

ε =
1

2
αγε.
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When π ∈ (0,Θ),

lim
ε→Φ−1( πΘ)

f (ε, π) =
1

2
αγε −

1

αγε

[
(θ − 1)

π

π/Θ
+ lim

x→0
ln (x)

]
− Φ−1

( π
Θ

)
=∞.

Therefore, the equation f (ε, π) = 0 has at least one solution in ε. To show that it has
only one solution, note that

fε (ε, π) = − 1

αγε
(θ − 1)

[
− π

Φ2 (ε)
φ (ε)

]
− 1

αγε
×

[
−e

π
Φ(ε)
−Θ

1− e
π

Φ(ε)
−Θ

]
×
[
− π

Φ2 (ε)
φ (ε)

]
− 1

=
1

αγε

[
(θ − 1)− e

π
Φ(ε)
−Θ

1− e
π

Φ(ε)
−Θ

][
π

Φ2 (ε)
φ (ε)

]
− 1.

Note that

ln

(
θ

θ − 1

)
= Θ

⇐⇒ θ − 1 =
e−Θ

1− e−Θ
.

Therefore

fε (ε, π) =
1

αγε

[
1− e

π
Φ(ε)
−Θ

1− e−Θ
− e

π
Φ(ε)

]
e−Θ

1− e
π

Φ(ε)
−Θ

π

Φ (ε)

[
φ (ε)

Φ (ε)

]
− 1.

It is easy to show that the first term in square brackets is negative as long as

0 <
π

Φ (ε)
.

Therefore the first term in fε (ε, π) is negative, which implies that f (ε, π) is strictly
decreasing in ε. Hence, there is a unique solution for f (ε, π) = 0, and the implicit
function theorem globally defined ε (π). Now

fπ (ε, π) = − 1

αγε

e−Θ

1− e−Θ

1

Φ (ε)
− 1

αγε

− 1
Φ(ε)

e
π

Φ(ε)
−Θ

1− e
π

Φ(ε)
−Θ

=
1

αγε

1

Φ (ε)

e−Θ

1− e
π

Φ(ε)
−Θ

[
e

π
Φ(ε) − 1− e

π
Φ(ε)
−Θ

1− e−Θ

]
.
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The implicit function theorem then yields

ε′ (π) = −fπ (ε (π) , π)

fε (ε (π) , π)

=

1
αγε

1
Φ(ε)

e−Θ

1−e
π

Φ(ε)
−Θ

[
e

π
Φ(ε) − 1−e

π
Φ(ε)

−Θ

1−e−Θ

]
1 + 1

αγε

[
e

π
Φ(ε) − 1−e

π
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−Θ

1−e−Θ

]
e−Θ
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π

Φ(ε)
−Θ

π
Φ(ε)

[
φ(ε)
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] ,
or

ε′ (π) π =
Ω (π)

1 + φ[ε(π)]
Φ[ε(π)]

Ω (π)
,

where

Ω (π) ≡ 1

αγε

[
eϕ(π)−Θ

1− eϕ(π)−Θ
− e−Θ

1− e−Θ

]
ϕ (π) ,

and ϕ (π) ≡ π/Φ [ε (π)].

Minimum at π = 0.. Note that ε′ (π) > 0 ⇐⇒ π > 0. Therefore ε (π) has a minimum
at π = 0. Therefore, χ ≡ 1 − Φ (ε), the fraction of sticky firms, has a maximum at
π = 0.

Limits as π → Θ or π → −∞.. When π → Θ, we have

lim
π→Θ

ε (π) =
1

2
αγε −

1

αγε

{
e−Θ

1− e−Θ

Θ

limπ→Θ Φ (ε (π))
+ ln

[
1− e

Θ
limπ→Θ Φ(ε(π))

−Θ

1− e−Θ

]}
.

The term in the logarithm is smaller than zero unless Φ [ε (π)] → 1, i.e., ε (π) → ∞.
Moreover, ε (π)→∞ is a fixed-point of the equation above and, for all π < Θ, there is
a unique ε (π). Therefore limπ→Θ ε (π) = ∞. For π → −∞, note that Φ [ε (π)] ∈ [0, 1]
implies that

ln

[
1− e

π
Φ(ε(π))

−Θ

1− e−Θ

]
→ ln

[
1

1− e−Θ

]
,

and
π

Φ [ε (π)]
→ −∞.

These two facts imply that ε (π)→∞ (and that therefore Φ [ε (π)]→ 1).
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Asymmetry of ε (π).. To derive the asymmetry in ε (π), it is convenient to write

ε (π) =
1

2
αγε −

1

αγε

[
e−Θ

1− e−Θ

π

Φ (ε)
+ ln

(
1− e

π
Φ(ε)
−Θ

1− e−Θ

)]
.

Let a be some strictly positive scalar. Clearly, if a ≥ Θ, ε (a) = ∞ > ε (−a). Now
consider a ∈ (0,Θ). Since f (ε, π) is strictly decreasing in ε, to show that ε (a) > ε (−a)
it suffices to show that f [ε (−a) , a] > 0. Now

ε (−a) =
1

2
αγε −

1

αγε

[
e−Θ

1− e−Θ

−a
Φ [ε (−a)]

+ ln

(
1− e
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Φ[ε(−a)]

−Θ
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,

and
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1

2
αγε −

1

αγε
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a
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+ ln
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a
Φ[ε(−a)]

−Θ

1− e−Θ
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Therefore

f [ε (−a) , a] =
1

2
αγε −

1

αγε

[
e−Θ

1− e−Θ

a

Φ [ε (−a)]
+ ln

(
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a
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1− e
a
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−Θ

)
− 2
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a
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.

Let
ω ≡ a

Φ [ε (−a)]
,

and consider the function

g (ω) ≡ ln

(
1− e−ω−Θ

1− eω−Θ

)
− 2

e−Θ

1− e−Θ
ω.

Clearly g (0) = 0. Moreover,

g′ (ω) =
1

eΘ+ω − 1
+

1

eΘ−ω − 1
− 2

eΘ − 1
.

Again, g′ (0) = 0, and

g′′ (ω) =
eΘ−ω

(eΘ−ω − 1)2 −
eΘ+ω

(eΘ+ω − 1)2 .
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Now note that

h (t) =
et

(et − 1)2

=⇒h′ (t) =
et (et − 1)− et × 2 (et − 1) et

(et − 1)4

=⇒h′ (t) ∝ −
(
1 + et

)
< 0,

for t > 0. Therefore, for ω > 0,

g′′ (ω) > 0 =⇒ g′ (ω) > 0 =⇒ g (ω) > 0,

which implies that f [ε (−a) , a] > 0 for a > 0.

9.5. Proof of Proposition 1 (existence of equilibrium)

Define E(π) = π + c̃(π). Observe that c̃(π)→ 0 as π → ±∞. Therefore,

lim
π→−∞

E(π) = −∞, lim
π→∞

E(π) =∞,

Implying that the equation E(π) = −c∗ has at least one solution by the intermediate
value theorem.

To show uniqueness, consider the derivative:

c̃′(π) =
1

ψ + σ

{[
χ′(π)

[1− χ(π)]2

]
π +

χ(π)

1− χ(π)

}
=

1

ψ + σ

[
1

1− χ(π)

]{
χ(π)−

φ[ε(π)]
Φ[ε(π)]

Ω(π)

1 + φ[ε(π)]
Φ[ε(π)]

Ω(π)

}

>
1

ψ + σ

[
1

1− χ(π)

]
{χ(π)− 1}

= − 1

ψ + σ
.

Hence, E ′(π) = 1 + c̃′(π) > 1− 1
ψ+σ
≥ 0, which implies that E(π) is strictly increasing

and ensures uniqueness when ψ + σ ≥ 1. Therefore,

E ′(π) = 1 + c̃′(π) > 1− 1

ψ + σ
.

If ψ + σ ≥ 1, it follows that E ′(π) > 0 for all π. Hence, E(π) is strictly increasing, and
the equilibrium is unique.
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9.6. Proof of Proposition 3 (“rockets and feathers”)

The equilibrium condition can be written as,

E(π) ≡ π + c̃(π) = −c∗.

Assume m = 0. The equilibrium condition for inflation is

π + c̃(π) = −ν.

To show that π(ν)ν < 0, consider the function

E(π) = π + c̃(π) =

{
1 +

1

ψ + σ

[
χ(π)

1− χ(π)

]}
π.

The expression in curly brackets is strictly positive, so sign(π(ν)) = −sign(ν).
Since E ′(π) > 0, it suffices to show that

E [−π(ν)] < ν.

Note that
E [−π(ν)] = −π(ν) + c̃[−π(ν)],

and from the equilibrium condition,

π(ν) + c̃[π(ν)] = −ν.

Therefore,

E [−π(ν)] < ν ⇐⇒ −π(ν) + c̃[−π(ν)] < ν

⇐⇒ − [−ν − c̃[π(ν)]] + c̃[−π(ν)] < ν

⇐⇒ c̃[π(ν)] + c̃[−π(ν)] < 0.

Substituting the expression for c̃(π), we obtain:

1

ψ + σ

[
χ(π(ν))

1− χ(π(ν))

]
π(ν) +

1

ψ + σ

[
χ(−π(ν))

1− χ(−π(ν))

]
(−π(ν)) < 0

⇐⇒
[

χ(π(ν))

1− χ(π(ν))
− χ(−π(ν))

1− χ(−π(ν))

]
π(ν) < 0.

Since π(ν) < 0, the inequality above holds if and only if

χ(π(ν))

1− χ(π(ν))
>

χ(−π(ν))

1− χ(−π(ν))
,

which is equivalent to
χ(π(ν)) > χ(−π(ν)).

This inequality follows directly from Proposition 2, completing the proof.
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9.7. Proof of Lemma 5

We first derive the expression for ∆ (π). From equation (25),

Vari [ci] = θ2Var (pi − p) + (αγε)
2 Var [ε̃i − Ei [ε̃i]]− 2θαγεCov [pi − p, ε̃i − Ei [ε̃i]] .

First note that
Vari (pi − p) =

χ

1− χ
π2.

Second,
Ei [ε̃i] = χE [εi,0 | εi,0 ≥ ε̃] = φ (ε) .

Moreover, from the properties of the truncated normal distribution,

Ei
[
ε̃2i
]

= χ

[
1 +

εφ (ε)

χ

]
+ (1− χ) = 1 + εφ (ε) ,

from which it follows that

Vari [ε̃i − Ei [ε̃i]] = Ei
[
ε̃2i
]
− (Ei [ε̃i])2 = 1 + εφ (ε)− [φ (ε)]2 .

As for the covariance, note that

Covi [pi − p, ε̃i − Ei [ε̃i]] = Ei [(pi − p) (ε̃i − Ei [ε̃i])]

= χ× (−π)

[
φ (ε)

χ
− φ (ε)

]
+ (1− χ) (padj − p) [−φ (ε)]

= −πφ (ε)

Therefore

Vari [ci] = θ2

(
χ

1− χ

)
π2 + α2γ2

ε

[
1 + εφ (ε)− φ (ε)2]+ 2θαγεπφ (ε) .

As for cognitive costs,

I =
κ

2

[
χ× 0 + (1− χ)

(
ln γ2

c − ln θκ
)]

=
1

2θ
Φ [ε (π)] θκ ln

(
γ2
c

θκ

)
.

Now,

α = 1− θκ

γ2
c

,

and

γε =

√
θκ

α
⇐⇒ θκ = αγ2

ε .
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Therefore

α = 1− θκ

γ2
c

⇐⇒ θκ

γ2
c

= 1− α,

from which it follows that

I =
1

2θ
Φ [ε (π)]αγ2

ε ln

(
1

1− α

)
.

We start by showing that the implementable set of equilibria is characterized by
equation (35).

Recall that the equilibrium conditions for c, n, π, and ε can be summarized as

σc+ ψn =
1− Φ (ε)

Φ (ε)
π − ln

(
1− τ
1− τ

)
+ a, (41)

c = a+ n, (42)

c+ π = m, (43)

ε =

1
2
αγε − 1

αγε

[
e−Θ

1−e−Θ
π

Φ(ε)
+ ln

(
1−e

π
Φ(ε)

−Θ

1−e−Θ

)]
, if π < Θ

∞, if π ≥ Θ
. (44)

Given π, equation (44) determines ε. Given c and n, equation (43) determines m, while
equation (41) determines τ .

Since the set of implementable equilibria is characterized by equation (35), we can
write the (non-linear) Lagrangian associated with the Ramsey problem as

Lp = U + Λp

(
AN −

ˆ 1

0

Cidi

)
.

From Lemma 1,

Û = c− 1

2
σc2 +

1

2

ˆ 1

0

c2
i di− n−

1 + ψ

2
n2 − 1

2θ
Vari [ci]

To derive the second-order approximation of the constraint term, write

Gp = Λp

(
AN −

ˆ 1

0

Cidi

)
= Λpe

λp

(
A×Nea+n − C

ˆ 1

0

ecidi

)
.
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So, again, we can write

Gp

C
1−σ = eλp+a+n −

ˆ 1

0

eλp+cidi

≈ 1 + λp + a+ n+
1

2
(λp + a+ n)2−

−
ˆ 1

0

(1 + λp + ci) di−
1

2

ˆ 1

0

(λp + ci)
2 di

= a+ n+
1

2
(λp + a+ n)2 −

ˆ 1

0

cidi−
1

2

ˆ 1

0

(λp + ci)
2 di

= a+ n+ λp (a+ n) +
1

2
(a+ n)2 −

ˆ 1

0

cidi− λc−
1

2

ˆ 1

0

c2
i di

= a+
1

2
a2 + n+

1

2
n2 + λp (a+ n− c) + an− c− 1

2

ˆ 1

0

c2
i di

Letting

L̂p = Û − I +
Gp

C
1−σ

yields the result. The solution to c and n follows from taking first-order conditions with
respect to c, n, and λp.

9.8. Proof of Lemma 6

It is easy to show that

∆ (Θ) = α2γ2
ε + αγ2

ε ln

(
1

1− α

)
,

and

∆ (0) = α2γ2
ε

{
1 + ε (0)φ [ε (0)]− φ2 [ε (0)]

}
+ Φ [ε (0)]αγ2

ε ln

(
1

1− α

)
.

Therefore

∆ (Θ)−∆ (0) = {1− Φ [ε (0)]}αγ2
ε ln

(
1

1− α

)
− α2γ2

ε

{
ε (0)φ [ε (0)]− φ2 [ε (0)]

}
⇐⇒ ∆ (Θ)−∆ (0)

αγ2
εφ [ε (0)]

=

1− Φ
(

1
2

√
αθκ

)
φ
(

1
2

√
αθκ

)
 ln

(
1

1− α

)
− α

[
1

2

√
αθκ− φ

(
1

2

√
αθκ

)]
.
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As α → 0, the expression goes to zero. As α → 1, the expression above goes to ∞.
Therefore, there must be a α (potentially zero) such that if α ≥ α, then ∆ (Θ)−∆ (0) >
0. But

α = 1− θκ

γ2
c

.

Therefore

α ≥ α ⇐⇒ γ2
c ≥

θκ

1− α
≡ γ2

c .

9.9. Proof of Lemma 8

Using the logarithmic approximation,

Πert =
(
Pept − Ξeξt

)
P
−θ
e−θptE

(
eαγeε̃t

)
⇐⇒ 1

θ
ert =

(
ept − θ − 1

θ
eξt
)
e−θptE

(
eαγeε̃t

)
⇐⇒ ert =

[
θept − (θ − 1) eξt

]
e−θptE

(
eαγeε̃t

)
⇐⇒ rt = ln

[
θept − (θ − 1) eξt

]
− θpt + ln

[
E
(
eαγeε̃t

)]
The standard second-order approximation of ln

[
θept − (θ − 1) eξt

]
around pt = 0 and

ξt = 0 yields

ln
[
θept − (θ − 1) eξt

]
≈ θpt − (θ − 1) ξt −

θ (θ − 1)

2
(pt − ξt)2 .

Moreover,

ln
(
E
[
eαγεε̃t

])
=

{
1
2

(αγε)
2 , if pt 6= pt−1

αγεεt−1, if pt = pt−1

.

Plugging into rt yields the result.

47


	Introduction
	Related literature 
	Model with fully rational households
	Household problem
	Firm's Problem
	Fiscal and monetary policy
	Equilibrium
	A Second-Order Approximation

	Model with boundedly-rational households
	The firm's problem
	Equilibrium
	The Phillips curve

	Rockets and Feathers
	Optimal Policy
	A Dynamic Model
	Conclusion
	Appendix
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Proposition 2
	Proof of Proposition 1 (existence of equilibrium)
	Proof of Proposition 3 (``rockets and feathers'')
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 8


